Numerical Simulation of Two–Dimensional Flow Past a Dimpled Cylinder Using a Pseudospectral Method
نویسندگان
چکیده
A numerical simulation of steady and unsteady two-dimensional flows past cylinder with dimples based on highly accurate pseudospectral method is the subject of the present paper. The vorticity and streamfunction formulation of two-dimensional incompressible NavierStokes equations with no-slip boundary conditions is used. The system is formulated on a unit disk using curvilinear body fitted coordinate system. Key issues of the curvilinear coordinate transformation are discussed, to show its importance in properly defined node distribution. For the space discretization of the governing system the Fourier-Chebyshev pseudospectral approximation on a unit disk is implemented. For steady flow simulations the non-linear time-independent Navier-Stokes problem is solved using the Newton’s method. For the time-dependent problem the semi-implicit third order Adams-Bashforth backward differentiation scheme is used. Finally numerical result for both steady and unsteady problems are presented. A comparison of results for the smooth cylinder with those from other authors shows good agreement. Spectral accuracy is demonstrated using the steady solver. Mathematics Subject Classification: 65M70, 35Q30, 76D17 1650 M. Kotovshchikova and S. H. Lui
منابع مشابه
High Reynolds Viscous Flow Simulation Past the Elliptical Airfoil by Random Vortex Blob
In this paper, numerical simulation for a two-dimensional viscous and incompressible flow past the elliptical airfoil is presented by Random Vortex Blob (RVB). RVB is a numerical technique to solve the incompressible, two-dimensional and unsteady Navier-Stocks equations by converting them to rotational non-primitive formulations. In this method, the velocity vector at a certain point can be cal...
متن کاملNumerical Simulation of Fluid Flow Past a Square Cylinder Using a Lattice Boltzmann Method
The method of lattice boltzmann equation(LBE) is a kinetic-based approach for fluid flow computations. In the last decade, minimal kinetic models, and primarily the LBE, have met with significant success in the simulation of complex hydrodynamic phenomena, ranging from slow flows in grossly irregular geometries to fully developed turbulence, to flow with dynamic phase transitions. In the presen...
متن کاملSimulation of Premixed Combustion Flow around Circular Cylinder using Hybrid Random Vortex
This research describes the unsteady two-dimensional reacting flows around a circular cylinder. The numerical solution combines the random vortex method for incompressible two-dimensional viscous fluid flow with a Simple Line Interface Calculation (SLIC) algorithm for the propagation of flame interface. To simplify the governing equations, two fundamental assumptions namely Low Mach Number and ...
متن کاملDirect Numerical Simulation of the Wake Flow Behind a Cylinder Using Random Vortex Method in Medium to High Reynolds Numbers
Direct numerical simulation of turbulent flow behind a cylinder, wake flow, using the random vortex method for an incompressible fluid in two dimensions is presented. In the random vortex method, the primary variable is vorticity of the flow field. After generation on the cylinder wall, it is followed in two fractional time step in a Lagrangian system of coordinates, namely convection and diffu...
متن کاملThe Study of Kinematics and Dynamics of Oscillating Laminar Flow About a Cylinder
In this paper, the oscillating two-dimensional laminar flow about a cylinder and the oscillation of a cylinder in still water are studied. A finite volume method is applied to solve the Navier Stokes equations using SIMPLEC algorithm on a body fitted co-located O-type grid. In this study, the non-dimensional flow numbers, Keulegan-Carpenter and Stokes’ numbers are chosen over a range where diff...
متن کامل